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Abstract
High-k dielectric materials with large bandgap energy will likely
play an important role in next-generation semiconductor devices,
but determining new materials to study is a challenge. It is
prohibitive to experimentally measure the dielectric k value for
every possible material. High-accuracy computational methods for
calculating the k value are time-consuming and energy intensive.
In this paper, we present a machine learning model trained on
thousands of materials with computed dielectrics from the
Materials Project Database [1] to predict the dielectric constants for
over a thousand compounds, and which can be applied to new
materials given the other relevant properties are k. The dielectric
prediction model was able to identify materials that are currently of
interest for use as dielectrics. Two materials discussed are
fluorapatite and lanthanum magnesium hexa-aluminate. This
model is intended only to guide further research. These two
materials serve as proof of concept that other materials similarly
predicted to be suitable are worthwhile to investigate.
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Introduction
As electronics become smaller, we must redesign those components
that fail to scale down. Silicon Dioxide dielectrics experience
electron tunneling and charge leakage in micro-transistors, so a
compound with a high dielectric constant (k value) and a large
bandgap is required. Generally, these are inversely related, so the
goal is to find the exceptions, quickly, and economically [3]. Since
not all conceivable compounds have a calculated dielectric value, it
is valuable to approximate the k values in order to identify
candidate materials. Machine Learning can provide a great deal of
insight [4].

The dielectric constant of a material is its permittivity relative to
vacuum permittivity. In relation to a capacitor, the addition of a
dielectric material allows the capacitor to hold more charge. A
higher dielectric constant corresponds to more charge. Consider
that an increasingly small material, tasked with holding a large
quantity of electrons, would be increasingly susceptible to quantum
tunneling. Electrons can tunnel from one energy level, or band, to
another without the input of energy if those energy levels are very
similar. The higher the bandgap, the lower the statistical possibility
of tunneling [5]. For a transistor, the "gate" dielectric is of utmost
importance for device function, channeling and trapping electrons,
reducing signal noise, and generally controlling where the
electrons are able to go.

Materials Project

The Materials Project creates its database using Density Functional
Theory (DFT). This theory enables the calculation of numerous
material properties to a reasonable approximation [2]. Materials
that actually exist and have experimentally calculated values have
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been compared to the values in the materials database to evaluate
the e�cacy of DFT; the theory fits some properties better than
others [6]. Many materials do not have experimentally calculated
values, or are not yet possible to synthesize.

Essentially, DFT assumes the ability to derive all information about
a material based on the location, or density, or atoms. It computes
an answer to the unsolvable many-body problem created by the
need for a wavefunction involving many charged bodies. This is
very resource intensive; it requires supercomputers and a good deal
of time, energy and labor. In theory, given enough computing
power, an exact answer can be applied [7]. Since it is costly and not
environmentally friendly or practical to use excessive computing
power, approximations are implemented, such as the
Born-Oppenheimer Approximation which assumes the nuclei are
fixed in space. The Materials Project database creates a baseline
where all theoretical values are calculated the same way. They
continually use supercomputing to calculate dozens of individual
material properties for thousands of theoretical compounds. The
database is still in process; there are thousands of materials that
haven’t had all of their properties properly computed, and more
theoretical materials continue to be added to the database. This
indicates that a model which could reasonably predict dielectric
values would allow insight into that gap in the database. The
materials project is designed to encourage such work: the database
is free to access in many forms including as json files that can easily
be manipulated for research.

Libraries: Pymatgen and Magpie

Pymatgen (Python Materials Genomics) is an open-source Python
library for materials analysis. This allowed for manipulation of
Materials Project data [8].
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The Materials Agnostic Platform for Informatics and Exploration
(Magpie) was also an invaluable open-source library for material
properties. Created for enabling machine learning, the library
contains material data that is available in compatible formats [9].

Machine learning

The model created leaned more heavily on supervised learning, but
unsupervised learning was also explored. Primarily the random
forest regression model was used, which is a supervised learning
model. It is more straightforward. Essentially this regression
method uses several decision trees with di�erent machine learning
algorithms and averages them. This model is known to work well
for non-linear relationships, which seemed appropriate, since the
material properties evaluated are not apparently linearly related. As
previously mentioned dielectric and band gap are inversely related
generally. Later in this paper, Figure 6 in Discussion: Selecting
Materials of Interest shows the general 1/x2 relationship that is
commonly observed [3].

Unsupervised Learning: t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a
convoluted tool for visualizing high-dimensional data, such as
material properties. It is also non linear, and is used to provide a
feel for the possible clustering of data [10]1.

The technique wasn’t necessarily vital to the model, but it was a
way to explore the relevancy of some material properties that,
based on intuition and knowledge of material science, seem like
they would have a relationship to the dielectric property. For
example on an intuitive level, comparing metals and ceramics,
conductors melt at lower temperatures than insulators.

1 The cited publication is interactive!
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Figure 1: t-SNE plots of the training dataset, showing clustering that corresponds to melting
temperature. The appearance of the two plots is di�erent due to parameters such as perplexity.

t-SNE does visualize high-dimensional data in 2-D, however it
often doesn’t give practical or reliable information and can turn out
di�erent between di�erent runs [10]. As seen in figure 1, it is also
highly dependent on the user-set parameters. It can however
suggest the existence of data clustering to be explored.

The t-SNE plot groups points using a complicated way of
determining similarity. The points can be color coded according to
one dimension. Once color coded there can be either observed
correlation between values and clusters (as is shown with melting
temperature in figure 1), or the colors could be randomly
distributed, which would suggest there was no connection.
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Methods
Training was performed on a subset of the Materials Project
database, specifically any entries which had a dielectric value, a
band gap greater than or equal to 2, as well as a small “e above
hull” (less than or equal to 0.005). The latter parameter represents
the theoretical energy of decomposition. This is how much energy
is between that structure and it’s the ground state. By selecting a
number close to zero, the materials would be at their ground state
and thus more likely to be stable. Of course there are materials that
are metastable, for example diamond, but those materials were not
added to the training set for this model. The set was also set to
materials whose computed energy of formation is less than silicone
dioxide, due to insights from the Robertson paper, as well as the
observation that otherwise we got 80% relative error [3].

The Json files were imported, and MPRester from pymatgen was
used to choose a number of material properties that may be
correlated with the dielectric value, and create a pandas dataframe.
This pulled 2,582 material structures. Additional features were
added from the magpie database. Using python we removed
non-numeric and irrelevant categories, to create a properties data
frame.

We then evaluated the linear correlation between the properties,
and dropped the redundant properties. Using numpy’s built-in
linear algebra functions to take the absolute value of the
correlation, and triangulate it.  Using a threshold of 0.85, the
columns were compared, and those with correlation values above
the threshold were also dropped. This created a linearly
independent set of 25 properties in a dataframe.
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Figure 2: Correlation matrix. Yellow is 100% correlation, dark blue is less correlated, with a
gradient intuitively showing degree of correlation.

Feature selection was the next step as 25 is on the high side of
features. Some t-sne plots were used to suggest uniquely related
properties. Python also has a machine learning tool called
scikit-learn. The feature selection tools include a way of scoring the
features with a k value and selecting the top features using a
regression method. Mutual info regression was used as it works for
non-linear correlations, and we chose to score the top 15. Between
these methods, the following features were used for the model:
band gap and density from the Material Project, and the following
from Magpie: 'Number', 'MendeleevNumber', 'MeltingT',
'Column', 'CovalentRadius', 'Electronegativity', 'NdValence',
'NValence', 'NpUnfilled', 'NUnfilled', 'GSvolume_pa',
'GSbandgap', and 'SpaceGroupNumber’.

Random forest regression was used on this dataset, creating a
model which was saved for later use.

The next step was to create a data frame of materials whose
dielectrics we would like to predict. Again, we limited the set to
those in ground state, but with a bit more allowance: anything with
“e above hull” less than 0.01. This dataset was created using the
same process as the test data, but it was featurized to only have the
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15 relevant features, as well as the composition, formula, and
Materials Project ID. These relevant features were fed through the
previously saved model to generate predicted values, which were
placed back into the dataframe as the dielectric value.

Figure 3: Plot of materials that contain both Calcium and Aluminum, and have 4 or fewer
elements in its composition. This is a screenshot of the interactive plot in jupyter notebook
which allows for quick identification of outliers that may be of interest.

Plots of band gap versus dielectric were generated to distinguish
compounds of a small number of earth-abundant elements. The
composition, formula, dielectric, and band gaps features allow the
data to be manipulated and usefully interpreted. These plots were
used to identify specific promising materials that defy the largely
inverse relationship between band gap and dielectric value, in order
to do a preliminary review of literature.
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Results and Discussion

Selecting Materials of Interest

Figure 5 below shows that a great deal of the dataset have at least
one abundant mineral in their composition, without preference for
or against these minerals. To narrow this down I’ve plotted two
combinations (figures 6 and 7), based on apparent quantity of
materials.

Figures 5-8: Figure 5 (top left)  is a plot of all model-predicted dielectric values
(set 1, blue), vs in orange the compounds that have 4 or fewer elements, at least
one of which is earth abundant (set 2). Figure 6 (top right) depicts set 1 again as
blue. Orange points: The set of ten compounds from set 2 that contained Mg and
Al. Figure 7 (bottom left) is the same as Figure 6, except with Ca rather than Mg.
Figure 8 (bottom right) has set 2 as blue, and the subset containing F as orange.



10

I also selected for fluorine in spite of its role as an industrial
pollutant, because fluorine is of interest currently in relation to
high-k dielectrics [11], and is the 13th most abundant element in
the earth’s crust.

I will draw attention to a couple of compounds that show up as
promising outliers on these plots. These examples imply the utility
of the model.

Fluorapatite

Within the fluorine set, a material outlier is fluorapatite. This
material is noteworthy because it is naturally occurring and
common. Unlike many compounds from the Materials Project
database which might not be practical to synthesize, this material
is stable, abundant, safe to handle, and harmless in the
environment as it is an important part of the phosphorus cycle. The
mineral has a number of uses, such as the prevention of tooth decay
(it is already naturally occurring in teeth), fluorescent lighting, and
as a decorative gemstone.

The predicted dielectric value is 10.6 and the band gap as calculated
by the Materials Project is 5.5. A quick literature review conveys
both longstanding and current interest in the material [12]. In 2019
the value of the material as a dielectric was investigated. “The study
showed that natural phosphatic shale could be a potential material
for optical, biological and dielectric applications,” where
phosphatic shale is “primarily monophasic consisting of
fluorapatite [13]. Cursory investigation into an experimental
dielectric value appears to indicate that the material is anisotropic,
and that the value depends on preparation and material phase so I
don’t believe I can meaningfully compare the predicted value to a
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literature value.2 However, a researcher interested in looking into
this material for this application would be better qualified to sort
through the wealth of studies done on the dielectric behavior of
fluorapatite and create an experiment to evaluate its behavior at the
nanoscale.

Lanthanum magnesium hexa-aluminate

Another outlier predicted by the machine learning model, this
magnetoplumbite is known already as a dielectric. Its band gap is
4.213. The model predicted the dielectric 22, and the experimentally
reported dielectric was 14. While the prediction was not the same
number as the experimental value, the importance of the model is
to identify materials worth investigating. This material is of
interest and was studied as recently as 2020 for optical and
magnetic properties. This material appears to be less thoroughly
investigated than fluorapatite, likely because it is not simply a
commonly occurring mineral. However the material seems
promising and relatively environmentally benign.

Error Analysis

Compared with materials whose dielectrics were calculated using
DFT, our model had a relative error of 0.48. This was calculated by
calculating the mean di�erence from the DFT values and dividing
by the standard deviation using the following code:

model_error = (mean_squared_error(yhat, y, squared=False))

relative_error = model_error / np.std(y)

2 I’ve seen reported values from three to thirty three, as well as around 10.3, and there were
other reports I did not have access to. I’m not qualified to understand the nuance.
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Figure 4: Parity plot of predicted versus training values, from random forest model. The plot
shows the values deviating more with extremely high k values, however the materials of
interest will be at a more moderate value closer to 20. If anything the model appears to over
predict with increasing values, which is fine for our purposes.

The level of accuracy is adequate for the intended use, as shown in
previous sections.

Conclusion

Considering materials that are non-toxic and easily obtained for
engineering problems is a vital application of machine learning.
The model adequately predicts materials which would have a
su�ciently high k value and band gap, even though the values may
deviate from the experimental as well as the DFT values. This tool
should be utilized, as model-predicted values are much less time
consuming and energy intensive than using DFT to calculate the
values for each theoretical material. Additionally, the speed of
technological advancement, as well as issues with the availability of
rare earth minerals and conflict minerals, creates an urgent need
for this tool. Rather than guessing at a material to study based on
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recent literature and intuition alone, this model allows the user to
sort by composition, in order to get additional inspiration to direct
their research.

This work could be expanded by attempting to account for
non-ground state materials, and to create more precise models that
are limited by category of materials. This might be achieved
through experimentation with the features used for the model. For
example materials could be grouped and limited by band gap,
melting temp, or electronegativity, similarly to how this model
limited its scope to “e above hull” close to zero. There are a number
of ways one could explore connections and attempt to improve
upon this model. Additionally it could be interesting to compare the
model to experimental values and find the percent di�erence and
relative error, as that would limit the scope to measurable and
certainly stable materials. It could also be possible to attempt to use
experimental values of dielectrics to train the model. That data has
been compiled into Jsons to some degree for purposes such as doing
error analysis on DFT calculations, but the smaller size of the data
could reduce the accuracy.3
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